Cic edizioni internazionali
Functional Neurology

Reconstructing contralateral fiber tracts: methodological aspects of cerebello-thalamocortical pathway reconstruction

Original Article, 229 - 238
doi: 10.11138/FNeur/2016.31.4.229
Tag this article
Abstract
Full text PDF
The identification of pathways connecting the cerebral cortex with subcortical structures is critical to understanding how large-scale brain networks operate. The cerebellum, for example, is
known to project numerous axonal bundles to thecerebral cortex passing through the thalamus.
This paper focuses on the technical details of cerebello-thalamo-cortical pathway reconstruction using advanced diffusion MRI techniques in humans in vivo. Pathways reconstructed using seed/target placement on super-resolution maps, created with track density imaging (TDI), were compared with those reconstructed by defining regions of interest (ROIs) on non-diffusion weighted images (b0). We observed that the reconstruction of the pathways was more anatomically accurate when using ROIs placed on TDI rather than on b0 maps, while inter-subject variability and reproducibility were similar between the two methods.
Diffusion indices along pathways showed a position-dependent specificity that will need to be taken into consideration in future clinical investigations.

Vol. XXXI (No. 4) 2016 October/December

  1. The challenge of in vivo tissue characterization, connectivity and big data
    Gandini Wheeler-Kingshott C.
    doi: 10.11138/FNeur/2016.31.4.189
  2. Network functional connectivity and whole-brain functional connectomics to investigate cognitive decline in neurodegenerative conditions
    Dipasquale O., Cercignani M.
    doi: 10.11138/FNeur/2016.31.4.191
  3. Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias
    Del Sole A., Malaspina S., Magenta Biasina A.
    doi: 10.11138/FNeur/2016.31.4.205
  4. Modeling white matter microstructure
    Duval T., Stikov N., Cohen-Adad J.
    doi: 10.11138/FNeur/2016.31.4.217
  5. Reconstructing contralateral fiber tracts: methodological aspects of cerebello-thalamocortical pathway reconstruction
    Palesi F., Tournier J-D, Calamante F., Muhlert N., Castellazzi G., Chard D., D'Angelo E., Wheeler-Kingshott C.G.
    doi: 10.11138/FNeur/2016.31.4.229
  6. Impact of cerebellar atrophy on cortical gray matter and cerebellar peduncles as assessed by voxel-based morphometry and high angular resolution diffusion imaging
    Dayan M., Olivito G., Molinari M., Cercignani M., Bozzali M., Leggio M.
    doi: 10.11138/FNeur/2016.31.4.239
  7. Connectivity measures in the Poffenberger paradigm indicate hemispheric asymmetries
    Erbil N., Yagcioglu S.
    doi: 10.11138/FNeur/2016.31.4.249
  8. Main effects and interactions of cerebral hemispheres, gender, and age in the calculation of volumes and asymmetries of selected structures of episodic memory
    Ramirez-Carmona R., Garcia-Lazaro H.G., Dominguez-Corrales B., Aguilar-Castañeda E., Roldan-Valadez E.
    doi: 10.11138/FNeur/2016.31.4.257
Last Viewed articles: la lista degli ultimi x visitati.
  1. Reconstructing contralateral fiber tracts: methodological aspects of cerebello-thalamocortical pathway reconstruction
    Palesi F., Tournier J-D, Calamante F., Muhlert N., Castellazzi G., Chard D., D'Angelo E., Wheeler-Kingshott C.G.
    doi: 10.11138/FNeur/2016.31.4.229
credits